	Cost			Market	Lower -of-Cost
	-or-Market:				

Light meters			
\quad Vivitar	$\mathbf{1 , 5 0 0}$	$\mathbf{1 , 3 8 0}$	$\mathbf{1 , 3 8 0}$
\quad Kodak	$\underline{1,680}$	$\underline{1,890}$	$\underline{1,680}$
Total	$\underline{3,180}$	$\underline{3,270}$	
Total inventory	$\underline{\$ 4,930}$	$\underline{\$ 4,962}$	$\underline{\$ 4,740}$

EXERCISE 6-10

Cameras
DVD players Ipods

Total inventory EXERCISE 6-11

Beginning inventory

2013	2014
\$ 20,000	\$ 27,000
150,000	175,000
170,000	202,000
27,000 ${ }^{\text {a }}$	41,000 ${ }^{\text {b }}$
\$143,000	\$161,000

${ }^{\mathrm{a}} \$ 30,000-\$ 3,000=\$ 27,000 . \quad{ }^{\mathrm{b}} \$ 35,000+\$ 6,000=\$ 41,000$.

EXERCISE 6-14
(a)

Alpha Company

| $\frac{\$ 190,000}{(\$ 45,000+\$ 55,000) / 2}$ | $\frac{\$ 292,000}{(\$ 71,000+\$ 69,000) / 2}$ |
| :---: | :---: | :---: |
| $=\underline{\underline{3.80}}$ | $=\underline{\underline{4.17}}$ |

Days in Inventory $\quad 365 / 3.80=\underline{\underline{96} \text { days }} \quad 365 / 4.17=\underline{\underline{88} \text { days }}$
(b) Omega Company is moving its inventory more quickly, since its inventory turnover is higher, and its days in inventory is lower.

PROBLEM 6-1A

(a) The sale will be recorded on February 26. The goods (cost, $\$ 800$) should be excluded from Austin's February 28 inventory.
(b) Austin owns the goods once they are shipped on February 26. Include inventory of $\$ 480$.
(c) Include $\$ 650$ in inventory.
(d) Exclude the items from Austin's inventory. Title remains with the consignor.
(e) Title of the goods does not transfer to Austin until March 2. Exclude this amount from the February 28 inventory.
(f) Title to the goods does not transfer to the customer until March 2. The \$200 cost should be included in ending inventory.
(a)

COST OF GOODS AVAILABLE FOR SALE

Date	Explanation	Units	Unit Cost	Total Cost
Oct. 1	Beginning Inventory	2,000	\$7	\$ 14,000
3	Purchase	2,500	8	20,000
9	Purchase	3,500	9	31,500
19	Purchase	3,000	10	30,000
25	Purchase	4,000	11	44,000
	Total	$\underline{\underline{15,000}}$		\$139,500

(b)

FIFO

(1)	Ending Inventory		Total Cost	(2) Cost of Goods Sold	
Date	Units	Unit Cost		Cost of goods available for sale	39,500
Oct. 25	4,000	\$11	\$44,000	Less: Ending	
19	100	10	1,000	inventory	45,000
	$\underline{\underline{4,100}}{ }^{\text {* }}$		\$45,000	Cost of goods sold	\$ 94,500

*15,000-10,900 = 4,100
Proof of Cost of Goods Sold

Date	Units	Unit Cost	Total Cost
Oct. 1	2,000	\$7	\$14,000
3	2,500	8	20,000
9	3,500	9	31,500
19	2,900	10	29,000
	10,900		\$94,500

LIFO

(1)	Ending Inventory	
Date	Units	Unit Cost
Oct. 1	2,000	\$7
3	2,100	8
	$\underline{\underline{4,100}}$	

(2) Cost of Goods Sold

Cost of goods
available for sale $\$ 139,500$
Less: Ending $\begin{array}{lr}\text { inventory } \\ \text { Cost of goods sold } & \underline{\$ 108,700}\end{array}$

PROBLEM 6-2A (Continued)

Proof of Cost of Goods Sold			
Date	Units	Unit Cost	Total Cost
Oct. 25	4,000	\$11	\$ 44,000
19	3,000	10	30,000
9	3,500	9	31,500
3	400	8	3,200
	$\underline{\underline{10,900}}$		\$108,700

(1)	AVERAGE COST Ending Inventory (2)			Cost of Goods Sold	
\$139,500 $\div 15,000=\underline{\underline{\$ 9.30}}$			Cost	s available	
			for sale		\$139,500
Units	Unit Cost	Total Cost	Less: En	inventory	38,130
4,100	\$9.30	\$38,130	Cost of	ds sold	\$101,370

(c) (1) FIFO results in the highest inventory amount for the balance sheet, $\$ 45,000$.
(2) LIFO results in the highest cost of goods sold, $\$ 108,700$.
(a)

COST OF GOODS AVAILABLE FOR SALE

Date	Explanation	Units	Unit Cost	Total Cost
1/1	Beginning Inventory	150	\$20	\$ 3,000
3/15	Purchase	400	23	9,200
7/20	Purchase	250	24	6,000
9/4	Purchase	350	26	9,100
12/2	Purchase	100	29	2,900
	Total	$\underline{\underline{1,250}}$		\$30,200

(b)

FIFO

(1)	Ending Inventory		Tota Cost	(2) Cost of Goods Sold	
Date	Units	Unit Cost		Cost of goods available for sale	\$30,200
12/2	100	\$29	\$2,900	Less: Ending	
9/4	150	26	3,900	inventory	6,800
	$\underline{\underline{250}}$		\$6,800	Cost of goods sold	\$23,400

Proof of Cost of Goods Sold				
		Unit		Total
Date	Units	Cost		Cost
$1 / 1$		150		$\$ 20$
	$\$ 3,000$			
$3 / 15$		400	23	
$7 / 20$	250	24		9,200
$9 / 4$	$\underline{200}$	26	$\underline{5,000}$	
	$\underline{1,000}$		$\underline{\$ 23,400}$	

LIFO

(1)	Ending Inventory	
Date	Units	Unit Cost
1/1	150	\$20
3/15	100	23
	$\underline{\underline{250}}$	

Total
Cost
\$3,000
$\mathbf{2 , 3 0 0}$
$\underline{\$ 5,300}$
(2) Cost of Goods Sold

Cost of goods available for sale $\quad \$ 30,200$
Less: Ending $\begin{array}{lr}\text { inventory } \\ \text { Cost of goods sold } & \underline{\mathbf{\$ 2 4 , 3 0 0}}\end{array}$

PROBLEM 6-3A (Continued)

Proof of Cost of Goods Sold			
Date	Units	Unit Cost	Total Cost
12/2	100	\$29	\$ 2,900
9/4	350	26	9,100
7/20	250	24	6,000
3/15	300	23	6,900
	$\underline{\underline{1,000}}$		\$24,900

AVERAGE COST

(1)	Ending	entory	(2)	Cost of Goods	Sold
\$30,200 \div 1,250 $=$ \$24.16			Cost of goods available for sale		\$30,200
Units	Unit Cost	Total Cost	Les	ding inventory	6,040
$\underline{\underline{250}}$	\$24.16	\$6,040	Cos	ods sold	\$24,160
Proof of Cost of Goods Sold					
1,000 units $X \mathbf{\$ 2 4 . 1 6 = \$ 2 4 , 1 6 0}$					

(c) (1) FIFO results in the highest inventory amount, $\$ 6,800$, as shown in (b) above.
(2) LIFO produces the highest cost of goods sold, $\$ 24,900$ as shown in (b) above.

PROBLEM 6-4A

(a)

Felipe INC.
Condensed Income Statements
For the Year Ended December 31, 2014

	FIFO	LIFO
Sales revenue.	\$747,000	\$747,000
Cost of goods sold		
Beginning inventory..	14,000	14,000
Cost of goods purchased	466,000	466,000
Cost of goods available for sale......	480,000	480,000
Ending inventory	45,900 ${ }^{\text {a }}$	36,000 ${ }^{\text {b }}$
Cost of goods sold	434,100	444,000
Gross profit	312,900	303,000
Operating expenses............................	130,000	130,000
Income before income taxes	182,900	173,000
Income tax expense (40\%)..	73,160	69,200
Net income..	$\underline{\underline{\$ 109,740}}$	\$103,800
$\begin{aligned} & { }^{\mathrm{a}} 17,000 \times \$ 2.70=\$ 45,900 . \\ & { }^{\mathrm{b}} \$ 14,000+(10,000 \times \$ 2.20)=\$ 36,000 . \end{aligned}$		

(b) (1) The FIFO method produces the most meaningful inventory amount for the balance sheet because the units are costed at the most recent purchase prices.
(2) The LIFO method produces the most meaningful net income because the cost of the most recent purchases are matched against sales.
(3) The FIFO method is most likely to approximate actual physical flow because the oldest goods are usually sold first to minimize spoilage and obsolescence.
(4) There will be $\$ 3,960$ additional cash available under LIFO because income taxes are \$69,200 under LIFO and \$73,160 under FIFO.
(5) Gross profit under the average cost method will be: (a) lower than FIFO and (b) higher than LIFO.
(a) Cost of Goods Available for Sale

Date	Explanation	Units	Unit Cost	Total Cost
June 1	Beginning Inventory	40	\$40	\$ 1,600
June 4	Purchase	135	44	5,940
June 18	Purchase	55	46	2,530
June 18	Purchase return	(10)	46	(460)
June 28	Purchase	30	50	1,500
	Total	$\underline{\underline{250}}$		\$11,110

Ending Inventory in Units:
Units available for sale
Sales ($110-15+65$)
Units remaining in ending inventory

250

(1) LIFO
(i) Ending Inventory

(ii) Cost of Goods Sold

Cost of goods available for sale Less: Ending inventory Cost of goods sold \$11,110 3,800 \$7,310
(iii) Gross Profit

Sales revenue
Cost of goods sold Gross profit

(iv) Gross Profit Rate
 Gross profit \$ 4.215

PROBLEM 6-5A (Continued)
(2) FIFO
(i) Ending Inventory June 28 30 @ \$50 1845 @ \$46 415 @ \$44 90
(iii) Gross Profit

Sales revenue
Cost of goods sold
Gross profit
(ii) Cost of Goods Sold
(iv) Gross Profit Rate
\$11,525
6,880
\$4,645

$$
\begin{array}{r}
\$ 1,500 \\
2,070 \\
\hline 660 \\
\hline \underline{\$ 4,230} \\
\hline
\end{array}
$$

Cost of goods available for sale Less: Ending inventory Cost of goods sold \$11,110
4,230
\$6,880
(3) Average-Cost

Weighted-average cost per unit:
(i) Ending Inventory 90 units @\$44.44
(iii) Gross Profit

Sales revenue
Cost of goods sold Gross profit

Cost of goods available for sale
Units available for sale
$\frac{\$ 11,110}{250}=\$ 44.44$
(ii) Cost of Goods Sold

Cost of goods available for sale
Less: Ending inventory Cost of goods sold \$11,110.00
3,999.60
\$7,110.40
(iv) Gross Profit Rate
\$11,525.00
7,110.40
$\frac{\text { Gross profit }}{\text { Net sales }} \quad \frac{\$ 4,414.60}{\$ 11,525.00}=38.3 \%$
(b) In this period of rising prices, LIFO gives the highest cost of goods sold and the lowest gross profit. FIFO gives the lowest cost of goods sold and the highest gross profit.

> PROBLEM 6-6A
(a)

BARTON INC.

Income Statement (partial)
For the Year Ended December 31, 2014

	Specific Identification	FIFO	LIFO
Sales revenue ${ }^{\text {a }}$	\$8,915	\$8,915	\$8,915
Beginning inventory	1,200	1,200	1,200
Purchases ${ }^{\text {b }}$	6,505	6,505	6,505
Cost of goods available for sale	7,705	7,705	7,705
Ending inventory ${ }^{\text {c }}$	2,505	2,720	2,175
Cost of goods sold	5,200	4,985	5,530
Gross profit	\$3,715	\$3,930	\$3,385

${ }^{(a)}(2,300 @ \$ 1.05)+(5,200 @ \$ 1.25)$
${ }^{(b)}(2,500 @ \$.65)+(4,000 @ \$.72)+(2,500 @ \$.80)$
${ }^{(c)}$ Specific identification ending inventory consists of:
Beginning inventory (2,000 liters - 1,000 - 450)

550 @ \$. 60	330.00
650 @ \$.65	422.50
1,100 @ \$.72	792.00
1,200 @ \$. 80	960.00
3,500 liters	\$2,504.50

FIFO ending inventory consists of:
March 20 purchase

$2,500 @ \$.80$	$\$ 2,000$
$1,000 @ \$.72$	$\mathbf{7 2 0}$
$\underline{3,500}$ liters	$\underline{\$ 2,720}$

LIFO ending inventory consists of:
Beginning inventory

\$1,200
March 3 purchase

$2,000 @ \$.60$	$\$ 1,200$
$1,500 @ \$.65$	$\underline{975}$
$\underline{\underline{3,500}}$ liters	$\underline{\underline{2,175}}$

(b) Companies can choose a cost flow method that produces the highest possible cost of goods sold and lowest gross profit to justify price increases. In this example, LIFO produces the lowest gross profit and best support to increase selling prices.

PROBLEM 6-7A

Sherlynn CO.
Condensed Income Statement
For the Year Ended December 31, 2014

	FIFO	LIFO
Sales revenue.	\$700,000	\$700,000
Cost of goods sold		
Beginning inventory	45,000	45,000
Cost of goods purchased.	532,000	532,000
Cost of goods available for sale.......	577,000	577,000
Ending inventory	$168,000^{\text {a }}$	147,000 ${ }^{\text {b }}$
Cost of goods sold	409,000	430,000
Gross profit ..	291,000	270,000
Operating expenses	140,000	140,000
Income before income taxes	151,000	130,000
Income tax expense (30\%)...	45,300	39,000
Net income...................	\$105,700	\$ 91,000

$\mathrm{a}(30,000 @ \$ 5.60)=\$ 168,000$.
${ }^{\mathrm{b}}(10,000 @ \$ 4.50)+(20,000 @ \$ 5.10)=\$ 147,000$.
(b) Answers to questions:
(1) The FIFO method produces the most meaningful inventory amount for the balance sheet because the units are costed at the most recent purchase prices.
(2) The LIFO method produces the most meaningful net income because the costs of the most recent purchases are matched against sales.
(3) The FIFO method is most likely to approximate actual physical flow because the oldest goods are usually sold first to minimize spoilage and obsolescence.
(4) There will be $\$ 6,300$ additional cash available under LIFO because income taxes are \$39,000 under LIFO and \$45,300 under FIFO.
(5) The illusionary gross profit is $\$ 21,000$ or ($\$ 291,000-\$ 270,000$). Under LIFO, Sherlynn Co. has recovered the current replacement cost of the units ($\$ 430,000$), whereas under FIFO, it has only recovered the earlier costs ($\$ 409,000$). This means that, under FIFO, the company must reinvest at least $\$ 21,000$ of the gross profit to replace the units used.

